Biomass Harvesting and Utilization

Bob Rummer
US Forest Service
Forest Operations Research
Auburn, Alabama

Outline

- Context
- Conventional operations
- Treatments in the stand
- Recovery
- Transport

A resource problem ...

A product problem ...

A Billion-Ton Feedstock

- Forests currently about 70%
- 2.5 x increase to 368M bdt

Future Woody Feedstocks

- 144M tons forest industry residues
- 64M tons logging residues
- 60M tons thinning/fuel treatments
- 52M tons fuelwood harvest
- 47M tons urban woodwaste

It works ...

265 MWh elec

160 MWh thermal

- 2000 tonnes/day
- 45% peat, 45% wood, 10% fossil

You can even run your car

2 acres of biomass

Biomass Recovery

- Must be economically-viable
 - Value to resource
 - Product value
- Must be ecologically-acceptable
 - Sustainable
 - Net gain

Biomass Recovery

Biomass—31 Flavors

Biomass is ...

- Smaller pieces
- Irregular shapes
- Low density
- Low potential value
- Non-merchantable material

Biomass has a cost

\$trt - \$tval =? \$rem - \$value - \$tval

Treatment cost

- Depends on biomass type
- Fire
- Piling
- Mastication

Site prep costs

Brush disposal/activity fuel treatments

Mastication

Treatment value

Treatment Values

- Tangible vs. intangible
- WTP ≠ value
- BD/Activity fuel treatments avoided
- Forest health
- Reduced fire risk
- Regeneration
- Nutrient cycling

Removal cost

Biomass Utilization

Conventional operations

- Lowest cost extraction (?)
- Limits on material size
- Ground-based impacts
- Limits on tract size, total volume

Biomass Transport

Biomass Transport

Comminution

Removal costs

- Stump-to-landing \$10 \$12/gt
- Chipping/grinding \$3 \$6/gt
- Trucking \$3 \$9/gt

Roadside disposal

Going after biomass

Small Scale

- Low production/high cost per ton
- Impacts can be significant
- Safety issues
- Low capital investment
- Labor-intensive
- Niche applications

Forwarding Slash

Biomass Bundling

Chip Recovery

Slash Transport

Slash transport

New System

\$trt - \$tval =? \$rem - \$value - \$tval

Conclusions

- Lowest cost biomass to user—residues
- Higher volume per acre favors removal
- Higher product value favors removal
- Land mgmt needs may require special applications/equipment
- Biomass for energy will not pay for stump to mill without subsidy
- Wide variety of options